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Three-tangle for a rank-3 mixture composed of Greenberger-Horne-Zeilinger, W, and flipped-W states is
analytically calculated. The optimal decompositions in the full range of parameter space are constructed by
making use of the convex-roof extension. We also provide an analytical technique, which determines whether
or not an arbitrary rank-3 state has vanishing three-tangle. This technique is developed by making use of the
Bloch sphere S8 of the qutrit system. The Coffman-Kundu-Wootters inequality is discussed by computing
one-tangle and concurrences. It is shown that the one-tangle is always larger than the sum of squared concur-
rences and three-tangle. The physical implication of three-tangle is briefly discussed.
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Entanglement is a genuine physical resource for the quan-
tum information theories �1�. It is at the heart of the recent
much activities on the research of quantum computer.

Entanglement for bipartite mixed states, called concur-
rence, was studied by Hill and Wootters in Ref. �2� when the
density matrix of the state has two or more zero eigenvalues.
Subsequently, Wootters extended the result of Ref. �2� to
arbitrary bipartite mixed states �3� by making use of the
time-reversal operator of the spin-1 /2 particle appropriately.
In addition, concurrence was used to derive purely tripartite
entanglement called residual entanglement or three-tangle
�4�. For the mixed three-qubit state � the three-tangle is de-
fined by making use of the convex roof construction �5,6� as

�3��� = min �
i

pi�3��i� , �1�

where the minimum is taken over all possible ensembles of
pure states. The ensemble corresponding to the minimum of
�3 is called optimal decomposition.

Recently, Ref. �7� has shown how to construct the optimal
decomposition for the rank-2 mixture of Greenberger-Horne-
Zeilinger �GHZ� and W states:

��p� = p�GHZ��GHZ� + �1 − p��W��W� , �2�

where

�GHZ� =
1

	2
��000� + �111�� , �3�

�W� =
1
	3

��001� + �010� + �100�� .

The optimal decomposition for ��p� was constructed with
use of the fact that �3��GHZ��=1, �3��W��=0, and

�GHZ �W�=0. Once the optimal decompositions are con-
structed, it is easy to compute the three-tangle. For ��p� the
three-tangle has three different expressions depending on the
range of p as follows:

�3���p�� = 
0 for 0 � p � p0,

gI�p� for p0 � p � p1,

gII�p� for p1 � p � 1,
� �4�

where

gI�p� = p2 −
8	6

9
	p�1 − p�3,

gII�p� = 1 − �1 − p��3

2
+

1

18
	465
 ,

p0 =
4	3 2

3 + 4	3 2
� 0.6269, p1 =

1

2
+

3

310
	465 � 0.7087. �5�

More recently, this result was extended to the rank-2 mixture
of generalized GHZ and generalized W states in Ref. �8�.

The purpose of this Brief Report is to extend Ref. �7� to
the case of rank-3 mixed states. In this Brief Report we
would like to analyze the optimal decompositions for the
mixture of GHZ, W, and flipped-W states as

��p,q� = p�GHZ��GHZ� + q�W��W� + �1 − p − q��W̃��W̃� ,
�6�

where

�W̃� =
1
	3

��110� + �101� + �011�� . �7�

For simplicity, we will define q as

q =
1 − p

n
, �8�

where n is a positive integer. Before we go further, it is
worthwhile noting that ��p ,q�=��p� when n=1 and, there-
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fore, Eq. �4� is the three-tangle in this case. When n=�,
��p ,q� can be constructed from ��p� by local-unitary �LU�
transformation �x � �x � �x. Since the three-tangle is a LU-
invariant quantity, the three-tangle of ��p ,q� with n=� is
again Eq. �4�.

Now we start with three-qubit pure state

�Z�p,q,�1,�2�� = 	p�GHZ� − ei�1	q�W� − ei�2	1 − p − q�W̃� ,

�9�
whose three-tangle is

�3�p,q,�1,�2� = �p2 − 4p	q�1 − p − q�ei��1+�2� −
4

3
q�1 − p − q�e2i��1+�2� −

8	6

9
	pq3e3i�1 −

8	6

9
	p�1 − p − q�3e3i�2� . �10�

The state �Z�p ,q ,�1 ,�2�� has several interesting properties. First, the mixed state ��p ,q� in Eq. �8� can be expressed in terms
of �Z�p ,q ,�1 ,�2�� as follows:

��p,q� =
1

3
��Z�p,q,0,0���Z�p,q,0,0�� + �Z�p,q,

2�

3
,
4�

3

��Z�p,q,

2�

3
,
4�

3

� + �Z�p,q,

4�

3
,
2�

3

��Z�p,q,

4�

3
,
2�

3

�� .

�11�

Second, �Z�p ,q ,0 ,0��, �Z�p ,q , 2�
3 , 4�

3 ��, and �Z�p ,q , 4�
3 , 2�

3 �� have the same three-tangle as shown from Eq. �10� directly. Third,
the numerical calculation shows that the p dependence of �3(p , �1− p� /n ,�1 ,�2) has many zeros depending on �1 and �2, but
the largest zero p= p0 arises when �1=�2=0 regardless of n. It can be proven rigorously with use of the implicit function
theorem. The n dependence of p0 is given in Table I. Table I indicates that when n increases from n=2, p0 approaches
4	32 / �3+4	32��0.6269 from 3 /4=0.75. This is because of the fact that the three-tangle for ��p ,q� should be Eq. �4� in the
n→� limit.

When p� p0, one can construct the optimal decomposition by making use of Eq. �11� as follows:

��p,
1 − p

n

 =

p

3p0
��Z�p0,

1 − p0

n
,0,0
��Z�p0,

1 − p0

n
,0,0
� + �Z�p0,

1 − p0

n
,
2�

3
,
4�

3

��Z�p0,

1 − p0

n
,
2�

3
,
4�

3

�

+ �Z�p0,
1 − p0

n
,
4�

3
,
2�

3

��Z�p0,

1 − p0

n
,
4�

3
,
2�

3

�� +

p0 − p

np0
�W��W� +

�n − 1��p0 − p�
np0

�W̃��W̃� . �12�

Thus, we have vanishing three-tangle in this region:

�3���p,
1 − p

n

� = 0 for p � p0. �13�

Now, we consider the p0� p�1 region. When p= p0,
Eq. �12� implies that the optimal decomposition consists of
three pure states �Z�p0 ,

1−p0

n ,0 ,0��, �Z�p0 ,
1−p0

n , 2�
3 , 4�

3 ��, and
�Z�p0 ,

1−p0

n , 4�
3 , 2�

3 �� with the same probability. This fact to-
gether with Eq. �11� strongly suggests that the optimal de-
composition at p0� p is described by Eq. �11�. As will be
shown below, however, this is not true in the full range of
p0� p�1.

The optimal decomposition �11� gives the three-tangle to
��p ,q� in a form

�I�p� = p2 −
4	n − 1

n
p�1 − p� −

4�n − 1�
3n2 �1 − p�2

−
8	6n�1 + �n − 1�3/2�

9n2
	p�1 − p�3. �14�

Since the three-tangle for the mixed state is defined as a
convex roof, �I�p� should be a convex function if it is a
correct three-tangle in the range of p0� p�1. In order to
check this we compute d2�I /dp2, which is

d2�I�p�
dp2 =

2

9n2��9n2 + 36n	n − 1 − 12�n − 1��

− 	6n�1 + �n − 1�3/2�
8p2 − 4p − 1
	p3�1 − p�

� . �15�

Using Eq. �15�, one can show that d2�I�p� /dp2�0 when
p*� p�1. The n dependence of p* is given in Table I. Thus,
we need to make �I�p� convex in the region p1� p�1,
where p1� p*. The constant p1 will be determined shortly.

For the large-p region one can construct the optimal de-
composition as follows:

TABLE I. The n dependence of p0, p1, and p*.

n 1 2 3 10 100 1000

p0 0.6269 0.75 0.7452 0.712 0.6604 0.6382

p1 0.7087 0.9330 0.9250 0.8667 0.7710 0.7298

p* 0.8257 0.9618 0.9572 0.9230 0.8650 0.8391
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��p,q� =
p − p1

1 − p1
�GHZ��GHZ� +

1 − p

3�1 − p1���Z�p1,
1 − p1

n
,0,0
��Z�p1,

1 − p1

n
,0,0
� + �Z�p1,

1 − p1

n
,
2�

3
,
4�

3

�

	�Z�p1,
1 − p1

n
,
2�

3
,
4�

3

� + �Z�p1,

1 − p1

n
,
4�

3
,
2�

3

��Z�p1,

1 − p1

n
,
4�

3
,
2�

3

�� , �16�

which gives the three-tangle in a form

�II�p� =
p − p1

1 − p1
+

1 − p

1 − p1
�I�p1� . �17�

Note that d2�II�p� /dp2=0. Thus, �II�p� does not violate the
convex constraint of the three-tangle in the large-p region.
The parameter p1 is determined by minimizing �II�p�—i.e.,
��II /�p1=0—which gives

4	6n�1 + �n − 1�3/2�
9n2

2p1 − 1
	p1�1 − p1�

= 1 +
4	n − 1

n
−

4�n − 1�
3n2 .

�18�

The n dependence of p1 is given in Table I. As expected, p1
is between p0 and p*. When n increases from n=2, p1 de-
creases from �2+	3� /4�0.933 to 1 /2+3	465 /310�0.709.

In summary, the three-tangle for ��p ,q� is

�3„��p,q�… = 
0 for 0 � p � p0,

�I�p� for p0 � p � p1,

�II�p� for p1 � p � 1,
� �19�

and the corresponding optimal decompositions are �12�, �11�,
and �16�, respectively. In order to show that Eq. �19� is genu-
inely optimal, we plot the p dependence of the three-tangles
�10� for various �1 and �2 when n=2 �Fig. 1�a��, n=3 �Fig.
1�b��, and n=10 �Fig. 1�c��. These curves have been referred

as the characteristic curves �9�. As Ref. �9� indicated, the
three-tangle is a convex hull of the minimum of the charac-
teristic curves �thick solid lines in the figure�. Figure 1 indi-
cates that the three-tangles �19� plotted as dashed lines are
the convex characteristic curves, which implies that Eq. �19�
is really optimal.

The above analysis can be applied to provide an analytical
technique which decides whether or not an arbitrary rank-3
state has vanishing three-tangle. First we correspond our
states to the qutrit states with

�GHZ� = �1

0

0
�, �W� = �0

1

0
�, �W̃� = �0

0

1
� . �20�

It is well known �10� that the density matrix of the arbitrary

qutrit state can be represented by �= �1 /3��I+	3n� ·
� �, where
n� is an eight-dimensional unit vector and 
i�i=1, . . . ,8� are
Gell-Mann matrices. Thus the points on the S8 correspond to
pure qutrit states, while the interior points denote mixed
states.1 Then, one can show straightforwardly that the pure
states with vanishing three-tangle correspond to

�W� → �0,0,−
	3

2
,0,0,0,0,

1

2

 ,

�W̃� → �0,0,0,0,0,0,0,− 1� ,

�Z�p0,
1 − p0

n
,0,0
�→ �− 	3�1,0,�1,− 	3�2,0,	3�3,0,�2� ,

�Z�p0,
1 − p0

n
,
2�

3
,
4�

3

�→ �	3

2
�1,−

3

2
�1,�1,

	3

2
�2,

3

2
�2,

−
	3

2
�3,

3

2
�3,�2
 ,

�Z�p0,
1 − p0

n
,
4�

3
,
2�

3

�→ �	3

2
�1,

3

2
�1,�1,

	3

2
�2,−

3

2
�2,

−
	3

2
�3,−

3

2
�3,�2
 , �21�

where �1=	p0�1− p0� /n, �2=	n−1�1, �3=	n−1�1− p0� /n,
�1= �	3 /2��1− �n+1��1− p0� /n�, and �2= �1 /2��1−3

1Unlike the qubit system, not all points in S8 correspond to the
qutrit states due to the condition of the star product �10�.
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FIG. 1. �Color online� Plot of the p dependence of Eq. �10� for
various �1 and �2. We have chosen �1 and �2 from 0 to 2� as an
interval 0.3. The three figures correspond to n=2 �a�, n=3 �b�, and
n=10 �c�, respectively. The minimum curve is plotted as a thick
solid line in each figure. These figures indicate that the three-tangle
in Eq. �19� �plotted as a dashed line in each figure� is a convex hull
of the thick solid line.
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�n−1��1− p0� /n�. Thus these five points form a hyperpolyhe-
dron in eight-dimensional space. Then all rank-3 quantum
states corresponding to the points in this hyperpolyhedron
have vanishing three-tangle.

Now we would like to consider the Coffman-Kundu-
Wootters �CKW� relation �4�, which is

4 det �A = CAB
2 + CAC

2 + �3�
� , �22�

for the three-qubit pure state �
�. In Eq. �22�, CAB and CAC are
the concurrences for the corresponding reduced states. Equa-
tion �22� indicates that the entanglement of qubit A originates
from both bipartite and tripartite contributions. For the mixed
state Ref. �4� has shown

4 min�det��A�� � CAB
2 + CAC

2 , �23�

where the minimum of one-tangle is taken over all possible
decompositions of �. In Ref. �7� the CKW inequality �23�
has been examined for the mixture of GHZ and W states. For
this case it was shown that the one-tangle is always larger
than the sum of squared concurrences and three-tangle.

Now, we would like to check the CKW inequality for
��p ,q� in Eq. �6� with q= �1− p� /n. In this case one can
compute the minimum one-tangle directly, whose expression
is

4 min�det �A� =
1

9
��8 − 4p − 12q + 5p2 + 12q2 + 12pq�

+ 4	pq�1 − p − q��2	6q + 2	6�1 − p − q�

− 3	p�� . �24�

Also it is straightforward to compute the sum of squared
concurrences, which is

CAB
2 + CAC

2 = 2�max�0, 2
3 �1 − p� − 1

3
	�3p + 2q��2 + p − 2q���2.

�25�
The one-tangle �upper solid lines�, CAB

2 +CAC
2 �left solid lines�,

and three-tangle �right solid lines� are plotted in Fig. 2 for
n=1, n=2, and n=10. This figure indicates that all quantities
approach their corresponding n=1 quantity when n increases
from n=2. This is consistent with the fact that ��p ,q� with
n=1 is LU equivalent to ��p ,q� with n=�. The inequality

4 min�det��A�� � CAB
2 + CAC

2 + �3 �26�

holds for all n. In the region pC� p� p0, where

pC =
�7n2 − 4n + 4� − 3n	5n2 − 4n + 4

�n − 2�2 , �27�

both CAB
2 +CAC

2 and �3 vanish while there is quite substantial
one-tangle. Its interpretation is given in Ref. �7� from the
mathematical point of view. However, its physical meaning
is still unclear at least for us. In the region p� pC and p
� p0 the entanglement of the qubit A mainly stems from the
bipartite and tripartite correlations, respectively.

From the point of view of physics it is also of interest to
investigate the physical role of the three-tangle. As shown in
Ref. �11� two-qubit mixed-state entanglement provides infor-
mation on the fidelity in bipartite teleportation through noisy
channels. Since the three-tangle is purely tripartite entangle-
ment, it may give certain information in the scheme of quan-
tum copy machines or three-party quantum teleportation
�12�. It seems to be interesting to explore the physical role of
three-tangle in particular real tasks.
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FIG. 2. �Color online� The p dependence of one-tangle �upper
solid lines�, sum of squared concurrences �left solid lines�, and
three-tangle �right solid lines� for n=1, 2, and 10. This figure
clearly indicates that not only the CKW inequality �23�, but also
�26�, holds for all integer n.
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