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Abstract
We study a generalized amplitude damping channel when environment is
initially in the single-qubit mixed state. Representing the affine transformation
of the generalized amplitude damping by a three-dimensional volume, we plot
explicitly the volume occupied by the channels simulatable by a single-qubit
mixed-state environment. As expected, this volume is embedded in the total
volume by the channels which is simulated by a two-qubit enviroment. The
volume ratio is approximately 0.08 which is much smaller than 3/8, the volume
ratio for generalized depolarizing channels.

PACS numbers: 03.67.Hk, 03.67.Lx, 03.65.Yz

1. Introduction

About three decades ago Feynman [1, 2] suggested that a mathematical computation can
be efficiently performed by making use of quantum mechanics. This suggestion seems to
be a starting point for the current active research of quantum computer. Ten years later after
Feynman’s suggestion Shor [3] developed the efficient factoring algorithm for the large integer
in the quantum computer. Shor’s factoring algorithm makes the most current cryptographic
methods useless, when the quantum computer is constructed. Subsequently, the efficient
search algorithm was developed by Grover [4, 5]. The factoring and search algorithms were
reviewed in [6] from the physically-motivated aspect. Recently, Shor’s factoring algorithm was
realized in NMR [7] and optical [8] experiments. In addition, the quantum search algorithm
was also physically realized in [9, 10].

The quantum computer uses frequently the unitary evolution of the closed quantum
system. If, however, the quantum system interacts with environment, the system takes the
unwanted non-unitary evolution, which appears as noise in quantum information processing.
Therefore, we should understand and control such noise process [11].
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In this paper, we would like to study the effect of the environment when the principal
system is a single-qubit pure state. In order for the principal system to evolve generally it is
well known that we need the two-qubit environment [12]. However, it is argued in [13] that
one-qubit mixed-state environment might be sufficient to simulate the most general quantum
evolution of a single-qubit system. This argument conjectured in [13] by counting the number
of independent parameters.

Later, however, many single-qubit principal channels were found, which cannot be
simulated by a single-qubit environment [14, 15]. Furthermore, recently, [16] has shown
that only 3/8 of the generalized depolarizing channels can be simulated by the one-qubit
mixed-state environment.

In this paper, we would like to extend [16] by examining the amplitude damping channel.
The amplitude damping is an important quantum noise, which describes the effect of energy
dissipation. The quantum noise is usually explored using a quantum operation ε(ρ), which
is a convex-linear map from density operator of the input space to that of the output space,
i.e. ρout = ε(ρin) [11]. In this language the amplitude damping is described via operator-sum
representation as

εAD(ρ) = E0ρE
†
0 + E1ρE

†
1 (1.1)

where operation elements E0 and E1 are

E0 =
(

1 0
0

√
1 − γ

)
E1 =

(
0

√
γ

0 0

)
(1.2)

and the parameter γ represents the probability for energy loss due to losing a particle. Since
the density operator of the single-qubit system can be always expressed as ρ = (11 + �r · �σ)/2
and ε(ρ) = (11 + �s · �σ)/2 where σi’s are Pauli matrices, the amplitude damping (1.1) can be
differently expressed from one Bloch vector �r to another Bolch vector �s in the following:⎛

⎝s1

s2

s3

⎞
⎠ =

⎛
⎝

√
1 − γ 0 0

0
√

1 − γ 0
0 0 1 − γ

2

⎞
⎠

⎛
⎝r1

r2

r3

⎞
⎠ +

⎛
⎝0

0
γ

2

⎞
⎠ . (1.3)

The map from �r to �s is called affine map and it, in general, is very useful to visualize the effect
of quantum operation in Bloch sphere. In this paper, we will generalize the amplitude damping
and its corresponding affine map. Making use of the generalized map we will plot explicitly
the three-dimensional volume, each point inside of which represents a state which can be
reached from a pure initial state when the environment is a two-qubit pure state. The volume
is compared with another volume derived from the single-qubit mixed-state environment. It
will be shown graphically that the latter volume is embedded in the former, which indicates
that the single-qubit mixed-state environment cannot simulate the whole channels derived
from the two-qubit environment.

This paper is organized as follows. In section 2, we briefly review [16]. In section 3,
the generalized amplitude damping (GAD) is considered. It is shown that the affine map of
GAD allows the double-degenerate transformation matrix M. It also allows that only the last
component of the translation vector �C is nonvanishing. In section 4, we tried to find the
GAD when the environment is a single-qubit mixed state. It is shown by plotting the three-
dimensional volume that the GAD channels simulated from the single-qubit environment have
very small portion compared to those simulated from the two-qubit environment. The volume
ratio is numerically computed and is approximately 0.08, which is much smaller than the
ratio 3/8 for generalized depolarizing channels. Section 5 summarizes conclusion and further
research direction briefly.

2



J. Phys. A: Math. Theor. 41 (2008) 045306 E Jung et al

Figure 1. Circuit model for the single-qubit channel in the presence of the single-qubit mixed-state
environment. The principal system is in |ψ〉 initially and the environment is in a mixed state ρe .
After unitary interaction via Ud , the environment will be traced out.

2. Brief review: one-qubit system with one-qubit environment

In this section, we consider a composed closed system which consists of one-qubit principal
system and one-qubit mixed-state environment as pictorially depicted in figure 1. Since similar
situation was rigorously discussed elsewhere [16], we would like to review it briefly.

We assume the principal system is initially in the pure state, i.e. ρin = |ψ〉〈ψ |, where

|ψ〉 = cos
θ

2
|0〉 + e−iφ sin

θ

2
|1〉. (2.1)

This state is represented as a point in the Bloch sphere [11].
Next we define the initial state of the environment. In order to control the mixed status of

the initial state we introduce a real parameter λ and define

ρe = (1 − λ)
11

2
+ λ|φ〉〈φ| (2.2)

where

|φ〉 = cos
ξ

2
|0〉 + e−iη sin

ξ

2
|1〉. (2.3)

Thus λ = 0 and λ = 1 correspond to the completely mixed state and pure state, respectively.
If 0 < λ < 1, the environment is in the partially mixed state.

Since the joint system is assumed to be closed, the interaction between the physical system
and the environment is represented by the unitary matrix Ud , which is an element of SU(4).
Thus this evolution matrix has generally 15 free parameters. As [17] has shown, however, the
number of these free parameters can be reduced to three by making use of the local SU(2)

unitary operators. Furthermore, it was shown in the same reference that this three-parameter
family of Ud is simply expressed in the Bell basis. Transforming the matrix representation of
Ud into the computational basis with discarding the unimportant global phase factor simply
yields

Ud =

⎛
⎜⎜⎜⎜⎝

cos α+γ

2 0 0 i sin α+γ

2

0 cos α−γ

2 e−iβ i sin α−γ

2 e−iβ 0

0 i sin α−γ

2 e−iβ cos α−γ

2 e−iβ 0

i sin α+γ

2 0 0 cos α+γ

2

⎞
⎟⎟⎟⎟⎠ (2.4)

where α, β and γ are real free parameters.
Since ρin, ρe and Ud are given, ρout can be explicitly computed by unitary evolution and

partial trace in the following:

ρout = Trenv
[
Ud(ρin ⊗ ρe)U

†
d

]
. (2.5)

Let us assume ρin = (11 + �r · �σ)/2 and ρout = (11 + �r ′ · �σ)/2. Then the quantum operation
defined as
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ε(ρin) = ρout (2.6)

is given by the affine map

ri → r ′
i = Mij rj + Cj (2.7)

where Mij is 3 × 3 real matrix in the form

Mij =
⎛
⎝ cos β cos γ λ cos ξ sin β cos γ −λ sin ξ sin η cos β sin γ

−λ cos ξ cos α sin β cos α cos β λ sin ξ cos η sin α cos β

λ sin ξ sin η cos α sin γ −λ sin ξ cos η sin α cos γ cos α cos γ

⎞
⎠ (2.8)

and the column vector �C is

�C = −λ

⎛
⎝sin ξ cos η sin β sin γ

sin ξ sin η sin α sin β

cos ξ sin α sin γ

⎞
⎠ . (2.9)

This affine map gives a parametrization of all the channels simulated by a one-qubit mixed-
state environment. Varying the six parameters α, β, γ, λ, ξ and η, we can obtain the various
output states ρout. We can use this various output states to explore the damping effect of the
principal system arising due to the interaction with the environment.

For later use we would like to discuss the eigenvalues 
 of M†M . To compute 
 we
should solve the highly complicated third-order equation

−
3 + f1

2 + f2
 + f3 = 0 (2.10)

where

f1 = cos2 α cos2 β + cos2 β cos2 γ + cos2 γ cos2 α + λ2[cos2 ξ sin2 β(cos2 α + cos2 γ )

+ sin2 ξ sin2 η sin2 γ (cos2 α + cos2 β)

+ sin2 ξ cos2 η sin2 α(cos2 β + cos2 γ )]

f2 = −[cos2 α cos2 β cos2 γ + λ2(sin2 ξ sin2 η cos2 α cos2 β sin2 γ

+ sin2 ξ cos2 η sin2 α cos2 β cos2 γ + cos2 ξ cos2 α sin2 β cos2 γ )]

× [(cos2 α + cos2 β + cos2 γ ) + λ2(sin2 ξ sin2 η sin2 γ

+ sin2 ξ cos2 η sin2 α + cos2 ξ sin2 β)]

f3 = [cos2 α cos2 β cos2 γ + λ2(cos2 ξ cos2 α sin2 β cos2 γ + sin2 ξ sin2 η cos2 α cos2 β sin2 γ

+ sin2 ξ cos2 η sin2 α cos2 β cos2 γ )]2. (2.11)

Although one can solve 
 analytically in principle, it would be too lengthy to express them
explicitly. When, however, α = γ , the eigenvalues reduce to the simpler expression in the
following:


1 = cos2 α cos2 β + λ2[cos2 ξ cos2 α sin2 β + sin2 ξ sin2 α cos2 β]


± = cos2 α

2
[(cos2 α + cos2 β) + λ2(cos2 ξ sin2 β + sin2 ξ sin2 α) ± 
̃]

, (2.12)

where


̃ =
√

{(cos2 α − cos2 β) + λ2(cos2 ξ sin2 β + sin2 ξ sin2 α)}2 − 4λ2 cos2 ξ sin2 β(cos2 α − cos2 β).

(2.13)

Another special case is ξ = 0, which gives


1 = cos2 α(cos2 β + λ2 sin2 β) 
2 = cos2 γ (cos2 β + λ2 sin2 β) 
3 = cos2 α cos2 γ.

(2.14)

These eigenvalues will be used to analyze the amplitude damping channels simulated by the
single-qubit environment.
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3. Generalized amplitude damping

Amplitude damping is a description of energy dissipation effects due to loss of energy from a
quantum system. The operator-sum representation for the amplitude damping channel defined
in equation (1.1) can be generalized by

ρ → ρ ′ =
3∑

i=0

EiρE
†
i (3.1)

where the operation elements are

E0 = √
ε0

(
1 0
0

√
γ0

)
, E1 = √

ε1

(
0

√
γ1

0 0

)

E2 = √
ε2

(√
γ2 0
0 1

)
, E3 = √

ε3

(
0 0√
γ3 0

) (3.2)

with

ε0 + γ2ε2 + γ3ε3 = γ0ε0 + γ1ε1 + ε2 = 1. (3.3)

The fact
∑

i E
†
i Ei = I implies that the quantum operation for the amplitude damping is a

trace-preserving map. Since there are four operation elements, the GAD is realized when the
environment is a two-qubit system. Therefore, a natural question arises: how much portion
for the amplitude damping can be simulated when the environment is a single-qubit mixed
state? This question is related to the volume issue, which will be discussed in the following
section.

The amplitude damping defined in equation (3.1) can be described by the affine map⎛
⎝r̃1

r̃2

r̃3

⎞
⎠ = MAD

⎛
⎝r1

r2

r3

⎞
⎠ + �CAD (3.4)

where

MAD =
⎛
⎝ε0

√
γ0 + ε2

√
γ2 0 0

0 ε0
√

γ0 + ε2
√

γ2 0
0 0 −1 + ε0(1 + γ0) + ε2(1 + γ2)

⎞
⎠

�CAD =
⎛
⎝ 0

0
ε0(1 − γ0) − ε2(1 − γ2)

⎞
⎠ .

(3.5)

Thus the generalized amplitude damping has following two important properties: (i) the
transformation matrix MAD has two-fold degeneracy in the eigenvalues. (ii) the first two
components of the translation vector �CAD are zero. As shown in equation (1.3) the standard
amplitude damping has same properties. This is a reason why we define the GAD as
equations (3.1) and (3.2).

The most general GAD channels simulated from the two-qubit environment can be
represented by the three-dimensional volume (X2, Y2, Z2) defined as

X2 = ε0
√

γ0 + ε2
√

γ2

Y2 = −1 + ε0(1 + γ0) + ε2(1 + γ2)

Z2 = ε0(1 − γ0) − ε2(1 − γ2).

(3.6)
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Figure 2. Graphical representation of the volumes occupied by (X2, Y2, Z2) (transparent volume)
and (X1, Y1, Z1) (opaque volume). As expected the opaque volume is embedded into the
transparent volume. This fact indicates that the amplitude damping channel cannot be simulated
completely by the one-qubit environment.

(This figure is in colour only in the electronic version)

This volume is plotted in figure 2 transparently to compare with the volume derived from
the single-qubit mixed-state environment4. Compared to the depolarizing channel, where the
tetrahedron volume is derived [16], the volume for the amplitude damping channel is very
complicated. Since, furthermore, (X2, Y2, Z2) depends on the four parameters ε0, ε2, γ0 and
γ2, it is highly difficult to compute the volume exactly. The numerical calculation gives the
volume approximately 1.67. We will show in the following section that the volume derived
from the single-qubit mixed-state environment is embedded in this volume.

4. Volume issue

In this section, we want to explore the amplitude damping when the environment is a single-
qubit mixed-state. In order to simulate the amplitude damping, as shown in the previous
section, the transformation matrix (2.8) should have the following two properties: (i) in the
singular value decomposition M = UDV where U and V are unitary matrices, the diagonal
matrix D should have double degeneracy; (ii) the first two components of the translation vector
U † �C should be zero.

In this paper, we consider the case of α = γ , where the eigenvalues of M†M are somewhat
simple. In this case, equations (2.12) and (2.13) imply that the necessary condition for the
diagonal matrix D to have the double degeneracy is the removal of the square root in 
̃. This

4 The three-dimensional animation of the volumes (X1, Y1, Z1) and (X2, Y2, Z2) can be seen in http://rose.
kyungnam.ac.kr/paper.htm.
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Table 1. The diagonal components of D for each case. The double-degeneracy occurs for the
cases of ξ = 0 and α = β.

Cases Diagonal components

ξ = 0 D11 = D22 = cos α
√

cos2 β + λ2 sin2 β

D33 = cos2 α

ξ = π
2 D11 = cos α

√
cos2 α + λ2 sin2 α

D22 = cos β
√

cos2 α + λ2 sin2 α

D33 = cos α cos β

β = 0 D11 =
√

cos2 α + λ2 sin2 ξ sin2 α

D22 = cos α
√

cos2 α + λ2 sin2 ξ sin2 α

D33 = cos α

α = β D11 = D22 = cos α
√

cos2 α + λ2 sin2 α

D33 = cos2 α

condition reduces to the following four distinct cases: (1) ξ = 0, (2) ξ = π/2, (3) β = 0, (4)
α = β = γ . The diagonal components D11,D22, and D33 for the diagonal matrix D for each
case are summarized in table 1.

Table 1 indicates that the cases ξ = π/2 and β = 0 are excluded as candidates for the
amplitude damping due to no degeneracy. The singular value decomposition for the remaining
candidates are for ξ = 0

U =
⎛
⎝ 0 1 0

−1 0 0
0 0 1

⎞
⎠

D =

⎛
⎜⎝

cos α
√

cos2 β + λ2 sin2 β 0 0

0 cos α
√

cos2 β + λ2 sin2 β 0
0 0 cos2 α

⎞
⎟⎠

V = 1√
cos2 β + λ2 sin2 β

⎛
⎝λ sin β −cos β 0

cos β λ sin β 0

0 0
√

cos2 β + λ2 sin2 β

⎞
⎠

(4.1)

and for α = β

U = 1
√

⎛
⎜⎝

sin η cos α − λ cos ξ cos η sin α cos ξ cos η cos α + λ sin η sin α sin ξ cos η
√

−(cos η cos α + λ cos ξ sin η sin α) cos ξ sin η cos α − λ cos η sin α sin ξ sin η
√

λ sin ξ sin α −sin ξ cos α cos ξ
√

⎞
⎟⎠

D =
⎛
⎝cos α

√ 0 0
0 cos α

√ 0
0 0 cos2 α

⎞
⎠

V =
⎛
⎝ sin η −cos η 0

cos ξ cos η cos ξ sin η −sin ξ

sin ξ cos η sin ξ sin η cos ξ

⎞
⎠

(4.2)

respectively, where √ =
√

cos2 α + λ2 sin2 α. Computing the translation vector U † �C, one can
show that the amplitude damping derived from the single-qubit mixed-state environment is
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represented by the three-dimensional volume (X1, Y1, Z1) defined as

X1 ≡ D11 = cos α
√

cos2 β + λ2 sin2 β

Y1 ≡ D33 = cos2 α (4.3)

Z1 ≡ (U † �C)3 = −λ sin2 α.

The volume generated by (X1, Y1, Z1) is plotted in figure 2 opaquely (see footnote 4).
As expected this volume is embedded in the lucid volume generated by (X2, Y2, Z2). This
means that the amplitude damping channel cannot be completely simulated by the one-qubit
environment although it is in the arbitrary mixed-state as depolarizing channel. The volume
for (X1, Y1, Z1) can be computed analytically, which is 2/15. Thus the volume ratio, i.e.
opaque volume divided by transparent volume, is approximately 0.08. This is much smaller
than 3/8, which is the volume ratio for the depolarizing channel.

5. Conclusion

We have studied the GAD channels simulated by the one-qubit mixed-state environment when
the principal system is initially in the single-qubit pure state. Examing the affine map for the
GAD channel simulated by the two-qubit environment, we have found that ξ = 0 with α = γ

and α = β = γ are the GAD channel simulated by the one-qubit mixed-state environment.
Representing the affine map as a three-dimensional volume, we have plotted the volume
opaquely in figure 2. As expected, this volume is embedded in the total volume generated by
the two-qubit environment. It turns out that the volume ratio is much smaller than 3/8, which
is the volume ratio for the depolarizing channel.

It seems to be interesting to explore the various different damping channels in this way.
For example, let us consider the phase damping whose quantum operation is defined as
ε(ρ) = E0ρE

†
0 + E1ρE

†
1, where operation elements are

E0 =
(

1 0
0

√
1 − λ

)
E1 =

(
0 0
0

√
λ

)
(5.1)

and λ is a quantity related to a relaxation time. The affine map for the phase damping is
thus (r1, r2, r3) → (r1

√
1 − λ, r2

√
1 − λ, r3). Therefore, the effect of the phase damping is

to shrink the Bloch sphere into ellipsoid. To explore the effect of the one-qubit mixed-state
environment in the phase damping process firstly we should generalize it by introducing four
operation elements considering the general features of the standard phase damping. Next we
should find same channels when the environment is a single-qubit mixed states by making use
of equation (2.8). It is unclear at least for us how to construct the generalized phase damping.

Another direction we would like to explore is to compute the entanglement measure
when the environment is involved. Recently, the Groverian measure for mixed states was
introduced in [18]. Although it was shown in [18] that the Groverian measure for mixed states
is entanglement monotone, the explicit computation of it for given mixed states is highly
nontrivial mainly due to the maximization over purification while the analytic computation
for the pure states is sometimes possible [19]. Since environment in general makes the
state of quantum system mixed state, it seems to be highly interesting to explore the role of
entanglement in the damping process.
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