

아스팔트 바인더 시험

침입도 시험기

아스팔트 바인더 침입도 시험 KS M 2252

아스팔트 가열 후 침입도캔에 넣음 (약 75g, 135℃ 이하, 30분 가열)

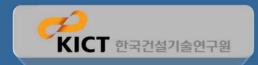
침입도캔을 25℃ 유지

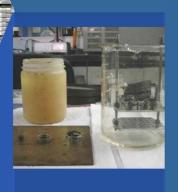
(1~1.5시간 방랭 후, 25℃수조 1~1.5시간)

① 다이얼 게이지 눈금 '0'으로 맞춤 (추: 50g, 수조 온도: 25℃ 확인)

침을 아스팔트 표면에 접촉하게 시험 기 높이 조절

(백열등을 이용하여 표면에 침끝 그림자를 맞춤)


5초 동안 고정쇠 누름


'①' **작업을 3회 이상 실시** (측정위치는 내벽에서 1cm, 전회 측정위치에서 1cm

(측정위치는 내벽에서 1cm, 전회 측정위치에서 1cm 이상의 위치)

> 3회 평균값을 정수로 보고 (단위: 0.1mm)

평균측정값 (0.1mm)	0~50	50~150	150~250	250 이상
허용차(0.1mm)	2	4	6	8

연화점 시험기

아스팔트 바인더 연화점 시험 (환구법)

시료, 환 준비 (연화점의 90℃ 이하로 가열)

2개의 환에 시료 넣음 (박리제도포 바닥판 위, 조금많게주입)

시 편 제 작

실온에서 30분이상 방랭

5℃의 수중에 10분간 냉각

환의 상부 높이로 시료를 자름

비이커에 증류수, 환 등을 넣고 5℃ 온도로 15분간 유지

5℃ 강구를 가이드의 중앙부에 넣음

증류수의 가 열 (가열시작 3분 후부터 5±0.5℃/분 속도)

환구가 바닥판에 닿을 때의 온도 (2개시험 결과의 온도차가 1 ˚ 호과하면 재시험)

인화점 시험기

아스팔트 취급 안전을 위한 최대 온도 구함 - 인화점 시험 (클리블랜드 개방식)

아스팔트 시료 준비 (약 80mL)

시료 가 열

(초기: 15℃, 예상인화점 56℃ 전: 5.5±0.5℃/분)

불꽃을 시료컵 위로 통과시킴 (예상인화점 28 ˚C전부터, 온도 증가 2˚C 마다)

시료 증기에 인화되는 온도 구함 (인화 최저 온도가 인화점)

반복허용차	재현허용차	
8 °C	16 ℃	

- ●시험기는 바람의 영향과 진동이 없는 실내에 위치시킴
- ●온도계는 시료컵 중심과 그 안쪽 벽의 거의 중앙에 위치하며, 끝이 시료컵 바닥에서 6mm 위에 위치하게 함
- ●시료온도가 예상 인화점보다 56℃ 낮은 온도에 도달했을 때 시료컵위에 공기 흐름이 없어야 함
- ●불꽃을 온도계를 꽂은 반대방향에서 시료컵의 중앙을 통과하도록 150mm 정도 수평으로 원호를 그리며 1초간 통과 시킴

RTFO 시험기

아스팔트 바인더의 단기노화

아스팔트 시료 준비

(400g, 150℃ 이하 30분 가열)

RTFO 시료병에 시료 35±0.5g 넣음

(수량: 8개)

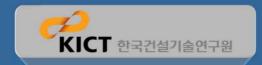
① 실온으로 냉각 후 2개의 병 무게 측정 (단위 0.001g)

RTFO 장비 작동

(Power, Blower, Sample Rock 버튼 누름)

조 정

(압력게이지 : 50psi, Flow Tube : 4.0)


장비가 163℃ 일 때 Blower 와 Sample Rock을 정지시킨 후에 시료병을 끼움

85분 노화

(Blower, Sample Rock 버튼을 누름, 오븐은 10분이내에 163 °C로 돌아와야 함)

'①'처리한 시료병은 냉각후 각각 무게 측정 그 외의 시료병은 아스팔트를 용기에 옮김 (1개의 용기에 옮긴 후 섞고 PAV팬(50g)과 캔에 보관)

● Blower를 회전시킬 경우 문을 반드시 닫아야 함

PAV 시험기

아스팔트 바인더의 장기노화 (수동 종료식)

시험기 덮게의 나사와 O-ring에 각각 구리스, 기름을 칠함

오븐의 온도를 100 [©]로 가열 (시험기 켜고, Temperature 를 AUTO 로 전환, 4시간 이상 소요)

주입공기의 압력을 25kg/cm²로 맞춤 (오븐 압력은 2.07MPa)

1팬에 아스팔트 시료를 50g씩 계량 (최소 2팬 이상 필요함)

팬을 홀더에 넣고 덮게 닫고 노화 시작 (Pressure를 AUTO로 전환)

20시간 후 Pressure를 끄고 팬을 꺼낸 후 팬을 163℃ 일반오븐에서 30분 가열 하고 캔에 담음

- ●종료시 필히 기압이 0.2이하임을 확인하고 나사 풀음
- ●시험도중 종료시 '3'을 누름

회전 점도 시험기

아스팔트의 작업 용이성 평가 (Brookfield 점도계)

시험기구 및 시료 준비 (아스팔트, 시험기구를 135 ˚ 오븐에 넣음)

시험기 준비, 온도베스 가열 (수평, 영점조정, 스핀들 셋팅, 135℃)

시료용기에 아스팔트 넣음

(스핀들 27번: 10.5mL)

시료챔버를 온도베스에 넣음

점도계와 온도베스를 정렬함 (점도계 뒤쪽 브라켓이 배스 윗면에 닿게한 후 1.5mm 높인 위치)

스핀들과 연결선을 장착 후 점도계를 내 리고 30분간 온도 유지

(온도 베스 윗 부분에 단열을 위한 뚜껑을 올려 놓음)

프로그램에서 점도계 모터속도 조절 (일반: 20rpm, 토크값 허용범위: 2~98%)

점도(cP),토크 등을 읽고 기록 (1분 간격 3회 평균, 실험온도, 스핀들번호, RPM)

●점도 Pa.S = 1/1000 cP, 1cSt = 1cP/밀도 Pa.S: Pascal.Sec, cP: centi-Poise

●평균 1시간 이내 소요

BBR 시험기

아스팔트 바인더의 저온 성능 실험

아스팔트 단기 노화 후 장기노화

시편 제작 (시료를135℃가열, 125×6.25×12.5mm)

시험 온도로 설정 후 하중 및 LVDT를 Calibration

시편을 시험 온도로 약 30분 양생

시편을 지지대에 거치 후 하중축을 아스팔트 시편에 접촉할 때까지 낮춤 (2.5~3.5g의 하중 재하)

> Remote 모드로 변환 후 'S'키를 눌러 하중 재하 (하중: 100g, 시간: 240초)

60초의 M-value와 Stiffness값 기록

● 수조의 액체: 에틸렌글리콜+메탄올+물 혼합액 또는 메탄올(100%)

체가름 시험기

골재의 체가름 시험

시료 준비 (4분법 또는 시료분취기 사용)

> 시료 건조 (105±5℃)

시험체 준비 및 체가름

체가름 종료 (1분동안 각체 통과중량이 1%이하 일때)

각체를 저울로 계량

골재 입도 계산 (통과중량 백분율)

최대치수	무게	
굵은골재	골재최대치수(mm)*0.2 (kg)	
잔골재	500g	
잔골재(1.2체95%통과일때)	100g	


시험체 조합 종류(mm)

75, 53, 37.5, 31.5, 26.5, 19, 13.2, 9.5, 4.75, 2.36, 0.6, 0.425, 0.3, 0.15, 0.075

아스팔트 혼합물 시험

마샬 다짐기

아스팔트 공시체 제조

골재 무게 계량

(배합표에 따름-공시체1개: 1200g)

골재 가열, 몰드 준비

(보통 170±5℃, 약 4시간 이상)

아스팔트 바인더 가열

(보통 165±5[°]C, 1시간)

가열된 골재에 아스팔트 첨가

혼합기 또는 손비빔으로 재료 혼합

몰드에 넣음

(스페출러로10~15회 찌름, 상하면에 종이원반 깔음)

다짐기로 혼합물 양면 다짐

(양면50회, 대형차1000대/일 양면75회)

하룻밤 후 탈형

(상온 12 시간 이상, 선풍기 4~6시간 후)

■●혼합온도 : 동점도 180±20cst(세이볼트점도 80±10초)

골재혼합온도 = 요구혼합온도 + 30℃

다짐온도 : 동점도 $300 \pm 30 \mathrm{cst}$ (세이볼트점도 140 ± 5 초)

선회다짐기

아스팔트 공시체 제조

골재 무게 계량

(150mm: 5500g, 100mm: 1200g)

골재 가열, 몰드 준비

(보통 170±5℃, 약 4시간 이상)

아스팔트 바인더 가열

(보통 165±5℃, 1시간)

가열된 골재에 아스팔트 첨가 후 혼합

(혼합기 또는 손비빔)

몰드에 넣음

(스페출러로 윗면을 고름, 상하면에 종이원반 깔음)

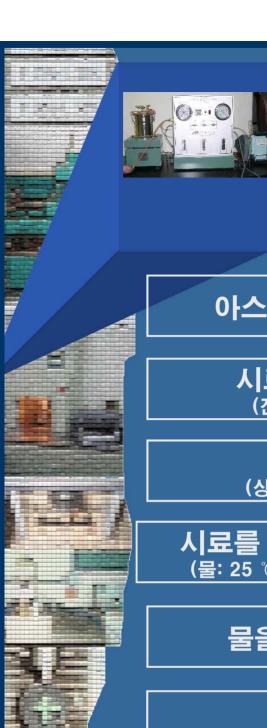
다짐기로 혼합물 다짐

(다짐압력600kPa, 회전30RPM, 다짐각1.25도)

즉시 탈형

(최종밀도가 93%보다 낮은 경우 5~10분 후 탈형)

●공시체높이


직경150mm: 135mm, 직경 100mm: 65.4mm

●혼합온도: 동점도 180±20cst(세이볼트점도 80±10초)

골재혼합온도 = 요구혼합온도 + 30 ℃

다짐온도 : 동점도 300 ± 30 cst(세이볼트점도 140 ± 5 초)

이론최대밀도 시험기(D형)

아스팔트 혼합물의 이론최대밀도 시험(KS F 2366)

아스팔트 혼합물 시료 준비

시료 가열 및 입자 분리 (잔골재 최대 크기 : 6.4mm)

시료 계량 (상온으로 냉각시킨 후 계량함)

시료를 시험기에 넣고 10분 진공 (물: 25 ℃, 진공게이지압97kPa이상, 진동)

물을 용기에 완전히 채움

용기의 중량 측정

밀도 계산

- 밀도 = 건조중량/(A B)
 - A = 건조중량+물채운 용기중량
 - B = 물과 시료를 채운 용기중량+아스팔트 열팽장보정
- A형용기(주발형)일 경우에는 진공 후 꺼내어 수중 질량을 구하고 밀도를 계산함. 밀도 = 건조질량/(건조질량-수중질량)

Instortek 이론최대밀도 시험기

아스팔트 혼합물의 이론최대밀도 시험

아스팔트 혼합물 시료 준비 (19mm혼합물 : 2000g, 125℃로 25~60분 가열)

시료 가열 및 입자 분리 후 방랭 (잔골재 최대 크기 : 6.4mm)

코어록 장비 모드를 Program#2 선택하 고 장비 안쪽에 채움판 3개 놓음

> 코어락백과 채널백의 무게 측정 (코어락백: 노란색, 채널백: 반투명)

채널백에 시료를 넣고 무게 기록

채널백의 요철면을 아래로 향한 상태에서 코어락백에 넣고 시험기에 놓음 (채널백의 시료를 펼쳐서 편평하게 만들고, 코어락백의 입구부분만 실링바에 닿도록 백을 놓음)

덮게를 닫고 안전바를 올리고 2~3초 누름

백을 진공후 즉시 수조로 옮겨 수중무게를 측정한 후 프로그램으로 밀도 계산 (수면 5cm아래에서 코어락백 입구를 자르고, 채널백을 연 상태에서 15분간 놔둔 후, 손으로 1분간 큰조각을 낫알로 부순 후 무게 측정)

마샬 안정도 시험

소성변형 저항성 평가용 아스팔트 혼합물 성능 시험

공시체 준비

(지름: 101.6mm, 높이: 63.5mm)

수조 60 ℃온도 유지

공시체를 30분간 수조에 넣음 (전체 시간이 동일하도록 일정 시간 간격으로 넣음)

재하헤드 하부궁형에 공시체 놓음 (헤드 궁형과 공시체 사이에 앏은 종이를 깔면 좋음)

> 상부 재하헤드를 올려놓고 시험기에 거치함

플로우미터 거치 후 하중재하 (50mm/분)

하중이 감소할때 시험 종료

마샬 안정도 계산

- ●마샬안정도: 최대하중을 공시체 높이보정한 값(kg)
- ●흐름값: 최대하중까지의 변형 값(0.1mm)

변형강도 시험

소성변형 저항성 평가용 개선된 아스팔트 혼합물 성능 시험

공시체 준비

(지름: 100, 101.6mm, 높이: 62.5±0.5mm)

수조 60 ℃온도 유지

공시체를 30분간 수조에 넣음 (전체 시간이 동일하도록 일정 시간 간격으로 넣음)

> 지그 하중봉을 올리고 바닥판에 공시체 놓음

플로우미터 거치 후 하중봉가까이 재하판을 올림

> 하중재하 (30mm/분)

하중(N)이 감소할때 시험 종료

변형강도(SD) 계산

$$S_{D} = \frac{0.32 \, P}{(10 + \sqrt{20 \, y - y^2})^2}$$

휠트랙킹 시험기

혼합물의 소성변형 저항성 측정용 휠트랙킹 시험 KS F 2374

공시체 준비

(가로 세로: 300mm, 두께: 50mm)

공시체를 60 ℃로 가열 (시험 5시간전 몰드째 항온실에서 가열)

시험기 차륜 주행

(60 °C, 차륜하중: 686N, 접지압 628kPa)

중앙부 침하 깊이 기록

(1분, 5분, 10분, 15분, 30분, 45분, 60분)

DS 계 산

변형속도(RD, mm/min) = (d60-d45)/15 총변형량(mm) = 주행 2,520회 변형깊이(60분소요) 동적안정도(DS, 회/mm) = 42*(60-45)/(d60-d45)

- ●공시체 다짐방향과 일치하게 차륜을 주행함
- ●60 ℃에서의 공시체 양생시간은 24시간 초과하면 안됨

3축 동적 크리프 시험 (UTM)

3축 동적 크리프 시험

공시체 제작

(지름: 100, 높이: 150mm)

공시체를 60 [©]로 가열 (시험시작 3시간 전에 항온실에서 가열)

공시체에 구속**압 제하**

공시체에 Haversine 하중 재하 (재하기:0.1초, 휴지기:0.9초, 120psi)

10000사이글까지 변형량 기록 (sine파의 최대 최소값)

각 사이클마다 변형량, 탄성계수, 변 형량기울기, 회복탄성계수 계산

시험결과에서 기울기와 절편계산

- 변형량 기록과 계산은 IPC사에서 제공하는 프로그램 에서 일괄처리되어 계산됨
- 시험을 토대로 기울기와 절편을 계산

아스팔트 혼합물 물성 계산

공극율, 포화도 등

- ●공시체 실측밀도: 공기중질량/(SSD-수중중량) 여기서, SSD = 표면건조포화상태질량
- ●이론최대밀도: 이론최대밀도 시험에 의해 구한값
- ●공극율 100- {(공시체 실측밀도/이론최대밀도) X 100}
- ●VMA(골재간극율): 공극율 + 아스팔트 용적 여기서, 아스팔트 용적 = 실측밀도*아스팔트비율/아스팔트비중

아스팔트 용적 = 실숙일도*아스팔트미율/아스팔트미웅 아스팔트 비중 = 1.030

●포화도(VFA): (아스팔트 용적/VMA) X 100

항 목		표층용		기층용
	마샬 안정도 (60℃,N)	7,500 이상 (5,000 이상)	6,000 이상	5,000 이상 (3,500 이상)
마	공극률 (%)	3~6	3~5	3~8
샬 안	골재간극률 (%)	공극율 4%시 골재 최대치수 13mm 14% 이상, 20mm 13% 이상		공극율 5% 시 25mm 13% 이상
정 도				
적	터프니스 (N・ mm)	8,000 이상		6,000 이상
용				
	동적안정도 (회/㎜)	750 이상	1,000 이상	
	아스팔트 추출 후 침입도 (1/10mm)		55 이상	

아스팔트 추출 시험

혼합물 입도 및 AP함량 시험 KS F 2354

오븐에서 아스팔트 혼합물 가열 (1400g, 110℃, 30분 이하)

혼합물을 잘게 만들어 비이커에 넣고 무게 측정 후 용매에 담금 (사전에 비이커 무게 측정, 1시간 이하)

필터 2장을 오븐에서 말려 무게 측정 (110℃ 이하, 10분 이하)

용매섞인 혼합물을 추출용 볼에 넣고 필터 2장을 볼에 덮은 후 덮게 닫음 (내부 덮게를 덮은 후 나사를 조이고, 외부덮개를 닫음)

① 속도를 3600rpm으로 천천히 조절 (추출액의 떨어짐이 끝나면 회전을 멈춤)

주입구에 200mL 용매 첨가후 ① 반복

용매첨가가 3회 이상이고 추출액이 엷은 담황색일 때 추출 완료

- 추출볼의 골재를 110 °C 에서 가열하여 무게 재고 체가름하여 입도 구함
- 아스팔트 혼합물의 중량과 추출골재 및 증발접시에 채취한 용액의 잔류중량의 중량비로 아스팔트 함량 결정

회전 증류식 아스팔 트 회수 시험

아스팔트 혼합물의 침입도 시험용 시료 제조

아스팔트 추출기로 추출용액 제조 (KS F 2354)

추출용액의 세립골재를 침하시킴 (원심분리기 또는 필터 사용)

추출용액을 비이커에 넣음

진공압력으로 비이커에서 추출용액을 회 전플라스크로 적정량 이동시킴

용매를 증류함

(항온조: 138℃, 플라스크회전: 40rpm, 질소/Co₂: 500mL/분, 감압: 40mmHg)

용매의 기화가 거의 없을 때 온도 올림

(항온조: 155℃, 플라스크회전: 45rpm, 질소/Co₂: 600mL/분, 감압: 45mmHg)

증류액 떨어짐이 멈춘 후 최대감압

5분 후 종료 회수아스팔트를 시험용기에 담음

- ●용매는 시약용 삼염화에틸렌를 사용
- 필히 환기가 잘 되는 곳에서 시험하여야 함

수정 앱슨 아스팔트 회수 시험기

아스팔트 혼합물의 침입도 시험용 시료 제조

원심추출기로 아스팔트용액 추출

비이커에 아스팔트 용액을 넣고 소정량을 추출플라스크로 적정량 이동시킴

용매를 증류함 (항온조:135℃, 감압:40mmHg)

추출 용액이 500mL 일때 조정 (항온조:160℃,Co₂흐름:500mL/min,감압:40mmHg)

플라스크 내부 온도가 155 [©] 일 때 조정 (항온조:160 [©],Co₂흐름:900mL/min,감압:45mmHg)

용매가 콘덴서에서 떨어짐을 멈추면 5분후에 재생 아스팔트를 시험용 캔에 담음

침입도 등의 아스팔트 품질 시험 수행

Ignition 챔버

열풍가열방식 혼합물 입도 및 AP함량 시험(수동계량식)

가열로를 538℃로 예열

오븐에서 아스팔트 혼합물 가열 후 입자로 분리 시켜서 시료 제조 (125℃, 25~60분)

혼합물 용기와 밑받침의 무게 측정

전체 무게 측정후 가열로에 넣고 가열

일정시간 후 무게를 측정하고, 5분 마다 무게 측정 (최대한 빠르게 측정한 후 가열로에 즉시 넣음)

전체 혼합물 중량이 5분동안 0.02% 이상 변하지 않은 경우 시험 종료

밑받침과 용기를 가열로에서 꺼내어 상 온으로 방냉한 후 무게 측정

- 아스팔트 함량 = (초기무게-가열후무게)/초기무게*100*보정계수
- 재생아스팔트 혼합물 생산을 위해서는 4번 시험하고 평균하여 구함
- 시험전에 교정을 수행하여 혼합물 종류에 따른 보정계수를 구하여야함

