

上三宮

- ●발생형태
 - 움푹하게 포장이 떨어져나가는 것
 - 표층부에서 주로 발생하며, 기층까지 파손되는 경우도 있음
- ●발생원인
 - ◆ 골재에서 아스팔트의 박리
 - 포장의 다짐 부족으로 인해 공극율이 높을 경우 주로 발생
 - 아스팔트 혼합물의 수분저항성이 낮을 경우 급속히 발생

교열

•피로균열(거북등균열)

- ●발생형태
 - ◆ 거북등 형태의 조그만 블록으로 연이어 균열 발생
 - ◆ 두꺼운 포장 : 상부-〉하부(Top-Down), 얇은 포장 : 하부-〉상부(Bottom-Up)
- ●발생원인
 - 아스팔트의 노화, 아스팔트 함량이 적거나, 아스팔트 층이 얇음
 - 과적차량 등의 설계하중보다 과도한 교통하중
 - 포장 표면에서의 과도한 처짐 발생
 - 수분에 의한 노상이나 보조기층의 약화

122

온도균열(블록균열)

- ●발생형태
 - 1~3m의 큰 블록 형태로 각을 이루어 서로 연결된 상태로 발생
- ●발생원인
 - 아스팔트 혼합물이나 노상, 보조기층의 체적 변화
 - 아스팔트의 침입도가 낮으며, 흡수성 골재 사용
 - 아스팔트 노화로 인한 경화

·선형균열(조인트균열 등)

• 온도하중, 조인트 부분 다짐 불량, 포장의 저온수축 또는 하부 시멘트 콘크리트의 수축으로 발생

• 시공줄눈, 숄더 조인트 균열 등

I Hallon

영구변형(소성변형)

●발생형태

- 포장 표면의 차량바퀴 통과부분에서 움푹 패이는 현상
- 1) 보조기층까지 변형 발생 2)표층부만 변형 발생

●발생원인

- ◆ 노상과 보조기층의 변형(과소 포장 두께, 다짐 불량, 수분 침투, 포장 전층의 구조성능 취약)
- 아스팔트 포장의 변형(다짐불량, 잔골재율 및 아스팔트 함량 과다, 과적차량)

「声意」

밀림변형(콜루게이션, 쇼빙)

●발생형태

- 콜루게이션(Corrugation) : 교차로, 버스정류 장 같이 차량이 정지, 대기, 출발하는 곳에 발 생하는 연속적인 물결모양으로 밀림 변형
- 쇼빙(Shoving) : 단단한 부분에 인접해서 발 생하는 갑작스런 밀림 변형

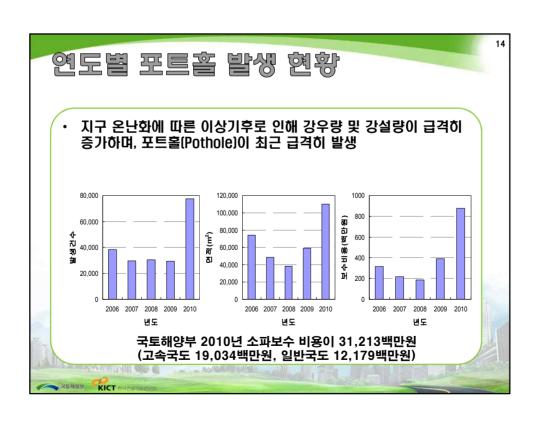
●발생원인

- 아스팔트 함량, 침입도, 잔골재율 등이 과다하 여 혼합물의 강성 부족
- 포장 전층의 구조성능 취약, 포장층의 부착성 능 저하, 하부층의 수분 포화, 포장 표면에 기 름 유출

기타 표면결함

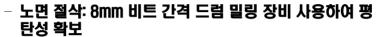
•라벨링

포장의 다짐불량, 시공시 온도저하, 아스팔트 함량 과소 등으로 발생하며, 주로 휠패스에서 표층의 아스팔트가 벗겨짐


불리딩(플러싱)

실코팅 또는 택코팅 불량, 혼합물 아스팔트 함량 과다, 교통하중으로 인한 과다 등으로 인하여 아스팔트가 포장 표면으로 베어나옴



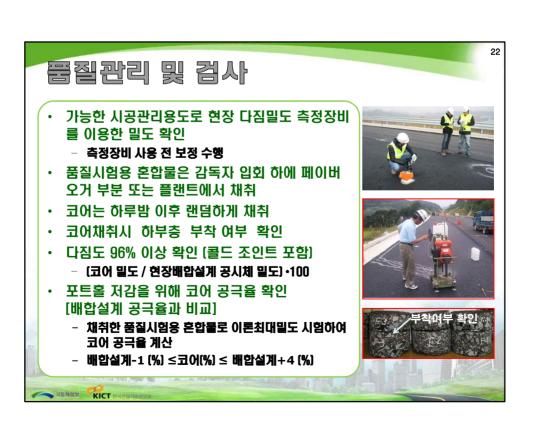


텍코트 및 교량 유지보수시 준수사항

- 택코트 시공 및 양생 철저
 - 포트홀 우려시 택코트 반드시 양생시간 확보
- · 교량 유지보수시 [교면포장설계 및 시공 잠정지침] 준수

- 도막식 방수재: 2~3회 나누어 도포하며, 가열형 등을 부
 직포 등 중심기재와 함께 시공
- 시트식 방수재: 콘크리트 바닥판 노면요철 추종할 수 있어야 하며, 기계식 시공 장비 이용

시험시공시 또는 시공전 [준비사항]


원활한 시공 및 다짐밀도 확보 위해 필요

- 시공관련 기술자의 도로포장 교육 이수여부 확인
- 다짐장비: 머캐덤 12t↑, 타이어12t ↑, 탄뎀8t ↑
- 바퀴 등 물 가득 채우고, 머캐덤 롤러/탄뎀 롤러 급수는 급수차 사용
- 계획포설량 · 시공시간으로 혼합물 전체 소요량 · 시간당 소요량 결정 및 가능 여부 확인
- 트럭평균 적재중량, 트럭사이클 시간 등으로 트럭소요대수 결정 및 가능여부 확인
- 페이버 포설 속도, 롤러 다짐횟수에 따른 롤러 다짐 속도 결정
- 현장별 생산 운반 포설 다짐온도 기준 결정

일반 아스팔트 혼합물 롤러 초기 진입시 다짐온도

구분	다짐 온도(°C)		
	일반	하절기(6월 [~] 8월)	동절기(11월~3월)
1차다짐	140 ~ 160	130 ~ 150	150 ~ 170
2차다짐	120 ~ 145	110 ~ 135	130 ~ 155
3차다짐	$60 \sim 100^{20}$		

